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In this work, the effect of temperature on charcoal structure and chemical composition is investigated
for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared
spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize
the chemical composition during the carbonization process. The multivariate models of charcoal were
able to distinguish between species and wood thermal treatments, revealing that the characteristics
of the wood charcoal depend not only on the wood species, but also on the carbonization temperature.
This work demonstrates the potential of mid infrared spectroscopy in the whiskey industry, from the
identification and classification of the wood species for the mellowing process to the chemical
characterization of the barrels after the toasting and charring process.
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INTRODUCTION

Charcoal is the carbonization product of organic matter
exposed to high temperature, in the absence of air or oxygen.
Wood charcoal has been manufactured for millennia for various
applications, which currently include medical (1), agricultural
(2), environmental (3,4), and food industries (5).

In the whiskey industry (6), charcoal utilization is part of
the process. It contributes to the properties of whiskey in two
separate processes: filtration and maturation. Used for Ten-
nessee whiskey, the new spirit is filtered through charcoal before
going into a cask. The whiskey is filtered through a charcoal
layer of 10 feet thick before barreling, to leach out some of the
fusel oils. This process, also known as the charcoal mellowing,
distinguishes Tennessee whiskey from Bourbon. It is a slow
and tedious process, requiring about 12 days for the whiskey
to mellow slowly through the charcoal (7). The charcoal for
filtration is produced from sugar maple wood (Acer saccharum).
However, anecdotal evidence in changes of whiskey quality has
been observed with changes in the maple species used to
produce the charcoal.

Charcoal is used in another filtration process during the
whiskey fabrication. Most bourbons are filtered before and after

aging with activated charcoal. No flavor is imparted by activated
charcoal, but when unfiltered whiskey gets too cool, it can
develop a “chill haze” or cloudiness. Technically there is nothing
wrong with cloudy whiskey; in fact, it is generally more flavorful
than the filtered variety. This additional step is an aesthetic
matter, because there may be a perception that the whiskey is
spoiled in some way. As a consequence, distillers generally filter
their bourbon before bottling it. Tennessee whiskey goes through
the same quick filtration process after aging.

Charcoal is an extremely good filter and filters harsher
components out of the whiskey. The most important component
of the maturation process is the wooden cask. Freshly distilled
spirits derived from the fermentation process are usually rather
colorless and harsh in taste and possess an overpowering
alcoholic flavor. However, if these products are permitted to
age in wood, a unique transformation occurs such that a yellow
to dark-brown color develops, the taste becomes smooth, and
the flavor and aroma become complex and pleasing. Small
changes during the maturation process have an enormous
influence on the later taste of a whiskey. Aged whiskey gets
all of its color and much of its flavors from the barrels. Bourbon
whiskey is always aged in new, white oak barrels. The insides
of the barrels are deeply charred. When the barrels are formed,
the staves are heated to help them bend, and the heat caramelizes
some of the wood sugars and tannins within each stave. This
toasting stage of coopering forms the red layer, which not only
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helps give color to the whiskey, but also imparts some extra
flavors. After the barrels are assembled, their interiors are then
charred over open flame, creating a layer of charcoal over the
red layer. When the whiskey is in the aging houses, it filters
through that charcoal as it expands and contracts with seasonal
temperatures changes. Both the red layer and the charred interior
are believed to add flavors to the whiskey.

In this work, thermogravimetric analysis and infrared spec-
troscopy coupled with multivariate analysis are used to inves-
tigate the chemical structure of charcoal made from different
maple species: sugar maple (Acer saccharum), red maple (Acer
rubrum), and silver maple (Acer saccharinum). The second part
of the study consists of using infrared spectroscopy to study
the effect of thermal treatments on the chemical structure of
white oak to have a better understanding of maturation process
in toasted charred white oak barrels.

MATERIALS AND METHODS

In the current work, sugar maple (Acer saccharum), red maple (Acer
rubrum), silver maple (Acer saccharinum), and white oak (Quercus
alba) were heated in an inert environment to temperatures of 250, 275,
300, 325, and 350°C for 2 h, along with an untreated control. Samples
size was approximately 1 cm× 2 cm × 5 cm. The initial moisture
content of the wood before heat treatment was 7.1%( 0.6%.

Thermogravimetric analysis (TGA) was then used to determine the
remaining amount of combustible material remaining in the charcoal.
For this analysis, a sample of approximately 5 mg from each piece of
charcoal was heated in a thermogravimetric analyzer (Perkin-Elmer)
from 50 to 900°C at 20°C/min in a nitrogen atmosphere. The TGA
tests were performed in triplicate on each piece of charcoal. The
averages of the three tests were then used for the results.

Table 1. Percentage of Carbon from the Analysis of Thermally Treated Wood

species ambient 250 °C 275 °C 300 °C 325 °C 350 °C

red maple 49.85 50.25 49.15 52.11 52.68 70.20
silver maple 49.28 41.69 50.43 52.95 60.12 71.16
sugar maple 49.46 49.63 48.27 68.60 65.00 72.04
white oak 49.60 49.00 52.11 68.55 65.34 71.60

Figure 1. TGA of (a) ambient, (b) 300 °C, and (c) 350 °C conditioned
wood specimens representing the change in mass when heated in a
nitrogen atmosphere.

Figure 2. Mid infrared of red maple (a) and white oak (b) at various
thermal treatments.
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Carbon and hydrogen percentages for each sample were determined
by a commercial laboratory via CHN analysis (Galbraith Laboratories,
Knoxville, TN), and the oxygen percentage was calculated by differ-
ence.

For the infrared measurements, small pieces from the samples were
taken, ground in a mortar. The powder was placed on the ZnSe crystal
of an attenuated total reflectance (ATR) accessory of a Perkin-Elmer
Spectrum One FT-IR spectrometer. Spectra were collected over 4000-
650 cm-1, with the resolution of 4 cm-1 and 16 scans per sample.
Sample contact area was a circle of about 1.5 mm in diameter. Four
spectra were collected for each thermal treatment. The spectral data
were imported into The Unscrambler software (ver. 9.1; CAMO A/S,
USA), and the transmittance spectra were converted to absorbance
spectra. Multivariate analysis was used to extract useful information
from the spectral data set. Mainly principal component analysis (PCA)
and projection to latent structures (PLS) were used. The absorbance
spectra were normalized and subjected to a full multiplicative scatter
correction (MSC) using the Unscrambler. These spectral data were then
ready for the PCA and PLS analysis.

PCA is essentially a descriptive method (8). This method allows
for visualization of the main variability of a data set without the
constraint of an initial hypothesis concerning the relationship within
samples, or between samples and responses (variables). The main goals
of this procedure are to find relationships between the different
parameters (objects and variables) and to detect possible clusters within
objects and/or variables. PCA removes the redundancy (intercorrelation)
in a data set, transforming it into a few loadings, which contain most
of the valuable spectral information much while retaining most of the
original information content. Each sample has a score on each principal
component (PC). It reflects the sample location along that PC. Plotting
these scores against one another can reveal patterns or clustering within
a data set. Scores describe the data structure in terms of sample patterns
and more generally show sample differences or similarities. Each score
has an associated “loading”, which provides information about the
chemical differences between the samples.

PLS provides a model for the relationship between a set of predicator
variablesX (n objects,m variables) and a set of response variablesY
(n objects,p response). It correlates known properties with the spectral
data. If the spectral data contain information about the property of
interest, a reliable calibration model can be constructed. In the FT-IR
data set, there is only one response (Y), the temperature at which the
samples were treated. The main idea here was to use the spectral data
to determine the temperature exposure of the charred samples. The
models were validated using a full cross validation approach (8). In
this technique, a sample is left out from the data set and the model is
calculated on the remaining data points. The value for the left-out
sample is then predicted. The process is repeated with another sample
of the calibration set, and so on until every object has been left out
once. This approach was used to make sure that the developed models
were not over-fitted. The number of principal components (factors)
used for the models was selected by observing the response of the
residualY-variance to added factors. The models were completed when
additional factors did not substantially decrease the residualY-variance.
PLS models generate also regression coefficients, or information on
the chemical features that drive the calibration. The regression
coefficients can be used to relate chemical features in the spectra to
the properties of interest.

RESULTS AND DISCUSSION

It was found that chemical transformations in the wood
occurred at different temperatures depending on the tree species.
TGA analysis of the wood samples indicates a different
dependence on temperature (Figure 1). The thermal degradation
of the unheated wood displays virtually identical behavior for
all species and carbon/ash yields upon treatment (Figure 1a).
This is also consistent with elemental analyses of the charcoal
that has a final carbon yield of around 71% for all wood species
(Table 1). Similarly, TGA analysis of charcoals produced at

Figure 3. Scores plot of the first two PCs obtained by PCA of the mid infrared spectra measured on the heat-treated samples and control. Different
symbols correspond to different wood species (b for white oak, 2 for silver maple, [ for sugar maple, 9 for red maple), while the colors correspond
to the different thermal treatments (black for room temperature, red for 250 °C, blue for 275 °C, magenta for 300 °C, aqua for 325 °C, and green for
350 °C).
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350 °C display similar yields and thermal behaviors (Figure
1c). However, it appears that the kinetics of this degradation
process proceeds at different rates for these wood species as
can be observed by the elemental analysis at 300 and 325°C
(Table 1) and the TGA analysis at 300°C (Figure 1b).

Fourier transform infrared spectroscopy was used to inves-
tigate the changes in the chemical composition of the samples
with thermal treatment.Figure 2aandb shows infrared spectra
collected for the heat treatments for red maple and white oak.
Differences in the spectra with thermal treatment are observable.
For the white oak samples, differences in the spectra are
noticeable starting at 300°C. For the red maple samples, changes
in the spectra are observed at 350°C. Before this temperature,
no differences are really visible in the spectral data. In the sugar
maple samples, like the white oak samples, changes are seen at
300°C (figure not shown). Because of the number of samples,
species, and heat treatments, multivariate analysis was used to
compare the spectra and extract chemical information.

Principal component analysis was carried out on the set of
the 96 pretreated spectra (4 species, 6 temperatures, 4 replicates).
Based on the residual variance curve, the optimal number of
PCs is 5. However, PC1 describes a considerable amount (85%)
of the total variance and shows a particularly interesting trend,
as it can be observed in the scores plot ofFigure 3.

Two distinct clusters are obtained along PC1. On the left
(negative along PC1) are the spectra of the samples with high
thermal treatments, and the right part (positive along PC1) shows
the low temperatures. PC1 is the most informative latent variable
for the description of the thermal treatment of the samples,
independent of the wood species. The loadings plot (Figure 4)
shows the chemical features that are responsible for grouping
the samples along PC1. The loadings show how well a variable
(wavenumber) is taken into account by the model components.
They can be used to understand how much each wavenumber
contributes to the meaningful variation in the data, and to
interpret variable relationships.

From this plot, it is possible to obtain information about the
chemical aspects that are involved in the thermal process. The
1127-927 cm-1 loadings region is the most important region
in discriminating the different heat treatments. The absorption
bands in this wavenumber interval are typically assigned to the
C-O stretching vibration in cellulose and hemicellulose.
Additional vibrations appear in several regions of the loadings
at 1191, 1287, 1583, and 1695 cm-1. If a variable has a positive
loading, it means that all samples with positive scores have
higher than average values for that variable and all samples with
negative scores have lower than average values for that variable.
On the basis of this rule and the positive band at 1127-927

cm-1, one can conclude that the samples in the right cluster
(low thermal treatment) have higher cellulose and hemicellulose
content than the samples in the right cluster (high thermal
treatment). Based on the negative bands associated with lignin
at 1583 and 1195 cm-1, all samples with negative scores (high
thermal treatment) have higher than average values for these
variables. These observations are consistent with the literature
on the thermal degradation of wood (9). Between 250 and 300
°C, hemicellulose and cellulose are degraded, while at higher
temperatures, the degradation of lignin occurs. Some differences
due to the species are also observed fromFigure 3. Figure 5a
andb shows more clearly these differences. They represent the
scores plot of the first two PCs obtained by PCA of the mid
infrared spectra measured on the heat-treated red and sugar
maple, respectively.

The samples cluster along PC1 depending on the thermal
treatment. For red maple, the change in the chemical composi-
tion of the samples starts at 350°C. Below this temperature,
the chemical composition of the samples is closer to the
untreated wood than to charcoal. For sugar maple, the change
in the chemistry appears at a lowest temperature. The samples
heated at 300°C have already a composition similar to charcoal.
The red maple and silver maple samples require more energy
(higher temperature) to degrade than the sugar maple and white
oak samples.

The principal component analysis of all of the species at all
temperatures reveals that at 350°C all of the samples are
charcoal. Thus, the next step of our study was to classify the
charcoal. The chemical composition (infrared spectra) of the
charcoal was used. A PCA was run on all of the samples treated
at 350°C. Figure 6a andb shows the plots of the results from

Figure 4. PC1 loadings plot.

Figure 5. Scores plot of the first two PCs obtained by PCA of the mid
infrared spectra measured on the heat-treated red (a) and sugar (b) maple.
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the PCA and the differentiation of the samples treated at 350
°C. Figure 6ashows a plot of the PC1 versus PC2, whileFigure
6b shows a plot of PC2 versus PC3. The first PC accounted for
68% of the total spectral variation, while the second and third
PCs contained 25% and 4%, respectively. There are clear
differences between the samples on the different plots.Figure
6a shows that the score of the charcoal made from silver is
positive along PC1 relative to white oak, red, and sugar maple.
However, overlap exists for sugar and red maple. InFigure
6b, there are four distinct clusters with red maple, sugar maple,
and white oak separated along PC3.

The silver samples are scattered along PC3, suggesting some
intravariability within the species samples. These PCA results
demonstrate that charcoals made from different wood species
can be classified by species on the basis of their chemical
composition.

Figure 7a-cand Table 2 show the important variables
(loadings bands) that are responsible for grouping the samples
along the different principal components.

The loadings of PC1 explained the chemical differences
between silver maple and the other species (red maple, sugar
maple, white oak). Mainly the differences are from lignin. There
are several important bands that can be assigned to lignin. The
band at 1595 cm-1 is assigned to CdC stretching vibration in
lignin, the peak at 1435 cm-1 to C-H deformation in lignin
and carbohydrates, and that at 1255 cm-1 to syringyl ring and
C-O stretching vibration in lignin and xylan. The main
differences between sugar and red maple to white oak are
observable in the loadings of PC2. In this case, the separation

is due principally to bands assigned to hemicellulose. The band
at 1730 cm-1 is assigned to unconjugated CdO stretching
vibration in hemicellulose, and at 1139 cm-1 to C-O-C
stretching vibration in cellulose and hemicellulose. Some
negative wavenumbers are also responsible for the classification,
especially the bands at 1547 and 1387 cm-1. These bands are
assigned to conjugated C-O stretching vibration and C-H
deformation in cellulose and hemicellulose. Finally, the PC3 is

Figure 6. Scores plot of the first two PCs (a) and the first and third PC
(b) obtained by PCA of the mid infrared spectra on the samples with a
thermal treatment of 350 °C. Different symbols correspond to different
wood species (b for white oak, 2 for silver maple, [ for sugar maple,
9 for red maple).

Figure 7. PC1 loadings plot (a), PC2 loadings plot (b), and PC3 loadings
plot (c).

Table 2. Significant Variables (wavenumbers) for PC1, PC2, and PC3

PC significant wavenumbers (cm-1)

PC1 2975 1595 1435 1379 1255 1139
PC2 1730 1543 1391 1139 1091
PC3 2975 1511 1455 1395 1139 955
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responsible for differentiating sugar maple and red maple.
Because these two species have similar characteristics, a third
PC with only 4% of variation is necessary to distinguish one
from another.

PLS regression was applied to the spectra to correlate
temperature to the spectral data. A PLS model was calculated
for each species and for all of the species together.Table 3
shows the correlation coefficient (R) and the root-mean-square
error of calibration (RMSEC) for the models built for each
species and all samples together independent of the species. The
PLS results for white oak will be discussed because of the
importance of building a model that can predict the temperature
in the barrel based on the chemical composition of the staves
after the toasting and charring of the barrels.Figure 8a andb
shows the results of the PLS analysis for the white oak set. A
very good correlation was found (R ) 0.989) between the
measured temperature and the temperature predicted from the
FT-IR spectra. This correlation shows that there is a direct and
linear relationship between the chemical composition of the
sample and the thermal treatment. The regression coefficients

that indicate the nature of the chemical changes suggest that
the three main components of wood are taken into account to
build the model. Several significant variables (wavenumbers)
in the fingerprint region (1800-600 cm-1) can be identified in
the regression coefficient plot (Figure 8b). The assigned peaks
are conjugated C-O stretching at 1567 cm-1, aromatic skeletal
vibration at 1515 cm-1, C-H deformation in lignin and
carbohydrates at wavenumber 1463 cm-1, syringyl ring and
C-O stretching in lignin and xylan at 1211 cm-1, C-O-C
vibration in cellulose and hemicellulose at 1139 cm-1, aromatic
skeletal and C-O stretch at 1111 cm-1, and C-O stretch in
cellulose and hemicellulose at wavenumber 1031 cm-1.

This work shows that FT-IR spectroscopy is a powerful tool
for monitoring chemical changes in wood due to thermal
treatment. FT-IR spectroscopy is therefore an excellent technique
for quality control of charcoal in both applications in whiskey
manufacturing. FT-IR spectroscopy can be used to classify wood
species and confirm that the right species, sugar maple, is used
to filter the distilled spirits in the mellowing process. It can
also be used to monitor temperature and changes in the
chemistry of the barrel during the toasting and charring process.
In the maturation process, because the thermal treatment
modifies the accessibility of the spirit to the wood, monitoring
the chemical composition and wood structure across the stave
is indispensable. The charring of the barrels creates a sequence
of thermally degraded wood materials that extends into the stave.
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Table 3. Correlation Coefficient (R) and Root-Mean-Square Error
Calibration for the Different Wood Species and All Species Together

species Nb of PCs correlation coeff. R RMSEC

white oak 3 0.989 5.5
red maple 4 0.959 10.4
silver maple 2 0.972 8.2
sugar maple 2 0.951 10.9
all species 4 0.883 16.6

Figure 8. Results of PLS model for oak samples showing (a) the
correlation between the measured temperature and predicted temperature
with FT-IR spectra and (b) the regression coefficients.
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